

CS103
FALL 2025

Lecture 07: Functions

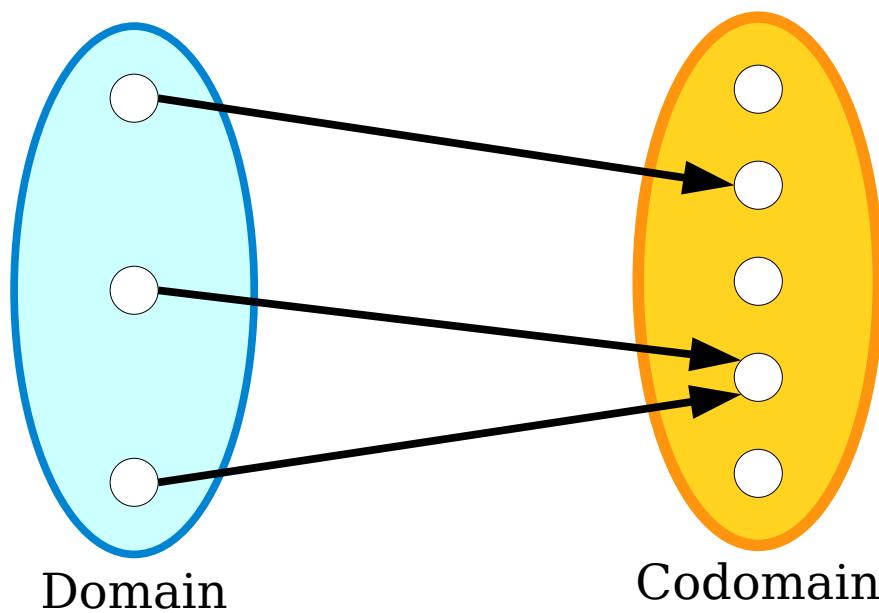
Part 2 of 2

Outline for Today

- ***Recap from Last Time***
 - Where are we, again?
- ***A Proof About Birds***
 - Trust me, it's relevant.
- ***Assuming vs Proving***
 - Two different roles to watch for.
- ***Connecting Function Types***
 - Relating the topics from last time.

Recap from Last Time

Recap from Last Time

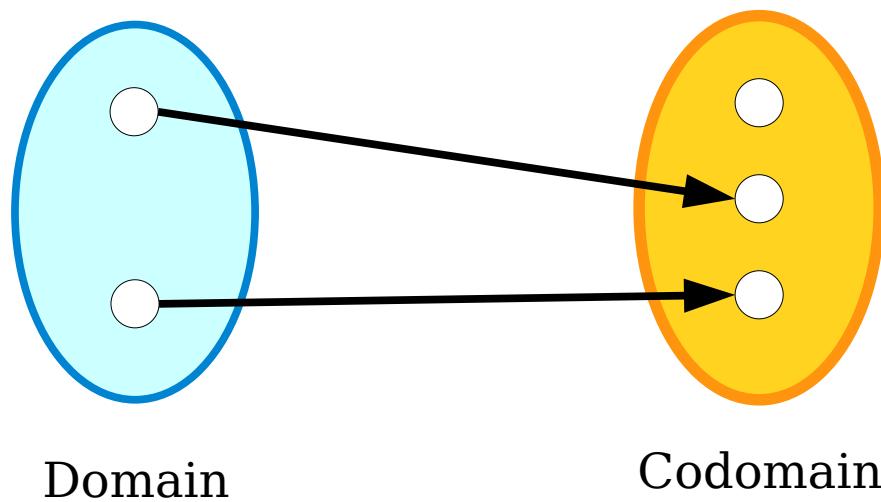


Is it a function? Yes!

Is it an injection? No.

Is it a surjection? No.

Recap from Last Time

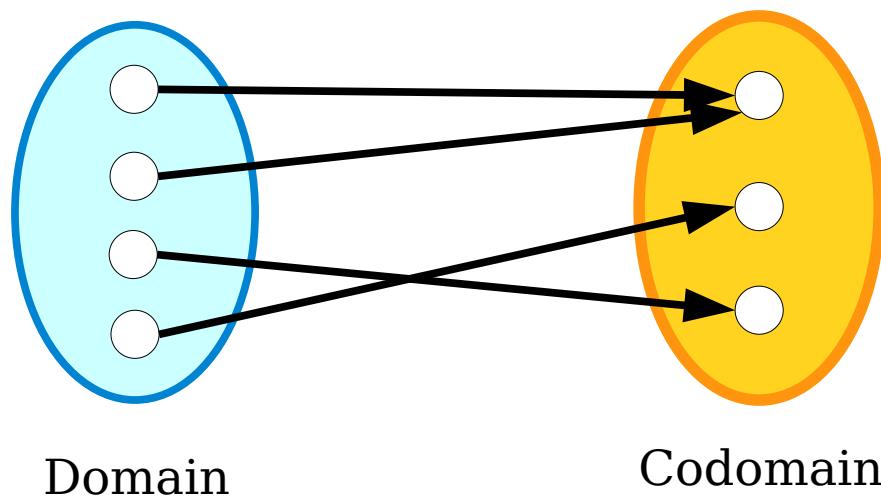


Is it a function? Yes!

Is it an injection? Yes!

Is it a surjection? No.

Recap from Last Time



Is it a function?

Is it an injection? No.

Is it a surjection? Yes!

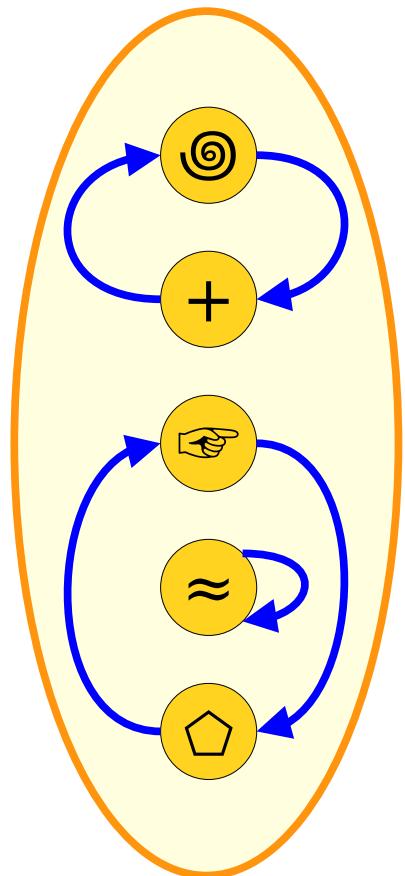
Involutions

- A function $f : A \rightarrow A$ from a set back to itself is called an **involution** when the following first-order logic statement is true about f :

$$\forall x \in A. f(f(x)) = x.$$

("Applying f twice is equivalent to not applying f at all.")

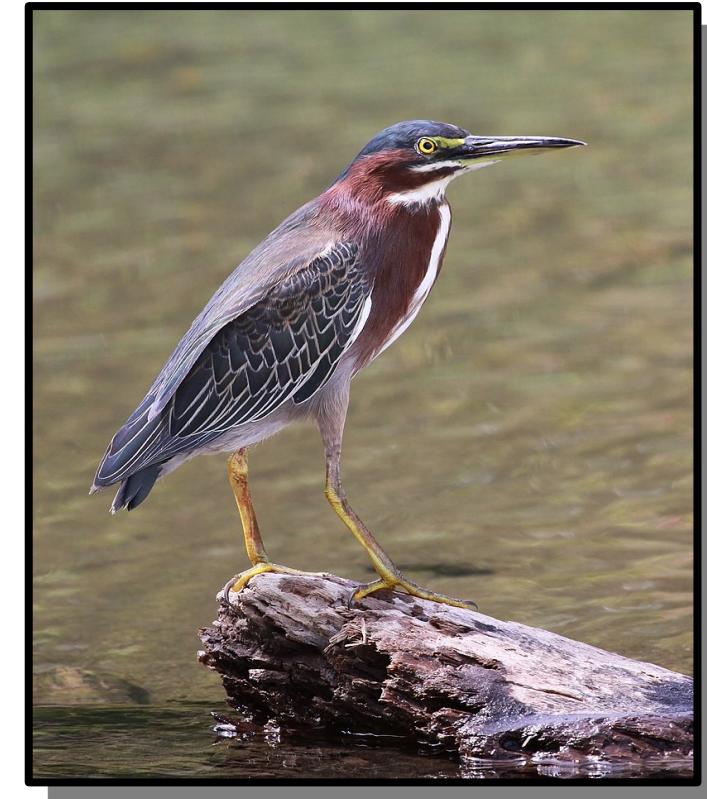
- For example, $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x) = -x$ is an involution.



		To prove that this is true...
$\forall x. A$		Have the reader pick an arbitrary x . We then prove A is true for that choice of x .
$\exists x. A$		Find an x where A is true. Then prove that A is true for that specific choice of x .
$A \rightarrow B$		Assume A is true, then prove B is true.
$A \wedge B$		Prove A . Also prove B .
$A \vee B$		Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. <i>(Why does this work?)</i>
$A \leftrightarrow B$		Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$		Simplify the negation, then consult this table on the result.

New Stuff!

A Proof About Birds



Theorem: If all birds have feathers,
then all herons have feathers.

Theorem: If all birds have feathers, then all herons have feathers.

Given the predicates

$Bird(b)$, which says b is a bird;

$Heron(h)$, which says h is a heron; and

$Feathers(x)$, which says x has feathers,

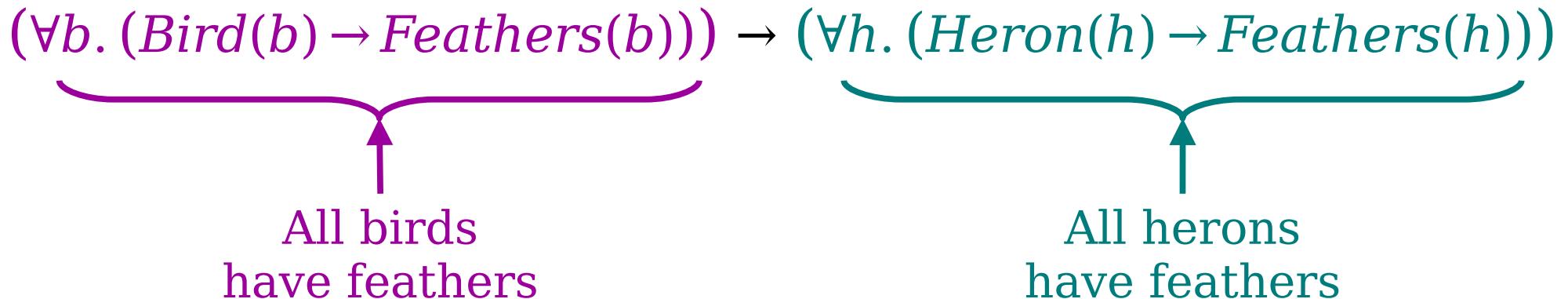
translate the theorem into first-order logic.

$$(\underbrace{\forall b. (Bird(b) \rightarrow Feathers(b))}_{\text{All birds have feathers}}) \rightarrow (\underbrace{\forall h. (Heron(h) \rightarrow Feathers(h))}_{\text{All herons have feathers}})$$

Theorem: If all birds have feathers, then all herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

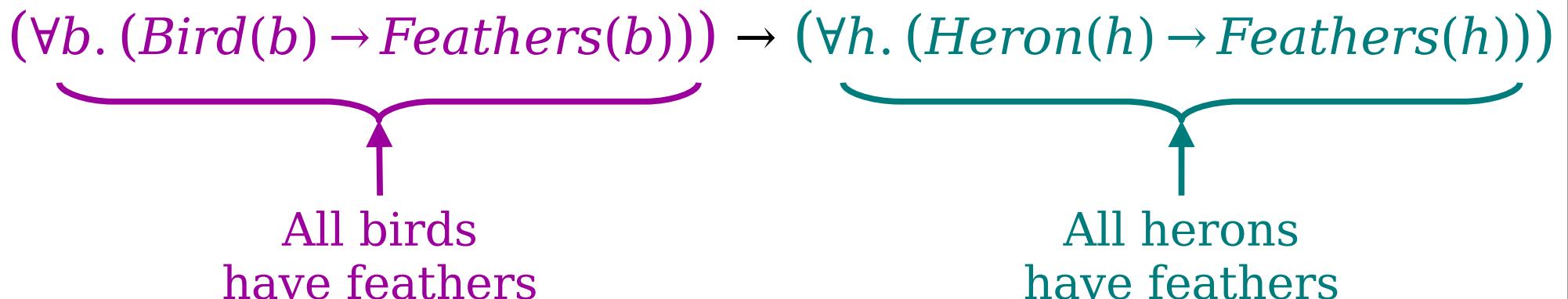
Consider an arbitrary bird b . Since b is a bird, b has feathers. *[and now we're stuck! we are interested in herons, but b might not be one. It could be a hummingbird, for example!]*



Theorem: If all birds have feathers, then all herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h . We will show that h has feathers. To do so, note that since h is a heron we know h is a bird. Therefore, by our earlier assumption, h has feathers. ■



Proving vs. Assuming

- In the context of a proof, you will need to assume some statements and prove others.
 - Here, we **assumed** all birds have feathers.
 - Here, we **proved** all herons have feathers.
- Statements behave differently based on whether you're assuming or proving them.

$$(\forall b. (Bird(b) \rightarrow Feathers(b))) \rightarrow (\forall h. (Heron(h) \rightarrow Feathers(h)))$$

We never introduce a variable *b*.

We introduce a variable *h* almost immediately.

Proving vs. Assuming

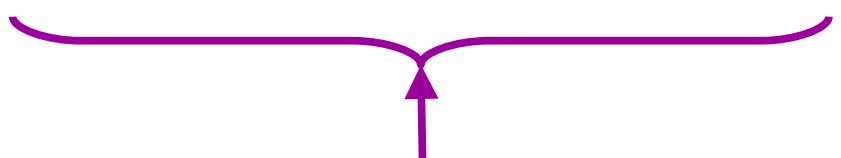
- To **prove** the universally-quantified statement

$$\forall x. P(x)$$

we introduce a new variable x representing some arbitrarily-chosen value.

- Then, we prove that $P(x)$ is true for that variable x .
- That's why we introduced a variable h in this proof representing a heron.

$$(\forall b. (Bird(b) \rightarrow Feathers(b))) \rightarrow (\forall h. (Heron(h) \rightarrow Feathers(h)))$$



We never introduce a variable b .

We introduce a variable h almost immediately.

Proving vs. Assuming

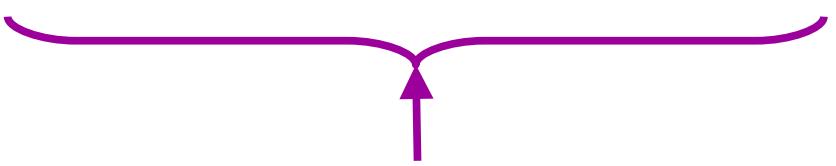
- If we **assume** the statement

$$\forall x. P(x)$$

we **do not** introduce a variable x .

- Rather, if we find a relevant value z somewhere else in the proof, we can conclude that $P(z)$ is true.
- That's why we didn't introduce a variable b in our proof, and why we concluded that h , our heron, have feathers.

$$(\forall b. (Bird(b) \rightarrow Feathers(b))) \rightarrow (\forall h. (Heron(h) \rightarrow Feathers(h)))$$



We never introduce a variable b .

We introduce a variable h almost immediately.

	If you assume this is true...	To prove that this is true...
$\forall x. A$	Initially, do nothing . Once you find a z through other means, you can state it has property A .	Have the reader pick an arbitrary x . We then prove A is true for that choice of x .
$\exists x. A$	Introduce a variable x into your proof that has property A .	Find an x where A is true. Then prove that A is true for that specific choice of x .
$A \rightarrow B$	Initially, do nothing . Once you know A is true, you can conclude B is also true.	Assume A is true, then prove B is true.
$A \wedge B$	Assume A . Also assume B .	Prove A . Also prove B .
$A \vee B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. <i>(Why does this work?)</i>
$A \leftrightarrow B$	Assume $A \rightarrow B$ and $B \rightarrow A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Connecting Function Types

Types of Functions

- We now have three special types of functions:
 - ***involutions***, functions that undo themselves;
 - ***injections***, functions where different inputs go to different outputs; and
 - ***surjections***, functions that cover their whole codomain.
- ***Question:*** How do these three classes of functions relate to one another?

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

$$\underbrace{(\forall x \in A. f(f(x)) = x)}_{\text{↑}} \rightarrow \underbrace{(\forall b \in A. \exists a \in A. f(a) = b)}_{\text{↑}} \quad \begin{array}{l} f \text{ is an} \\ \text{involution.} \end{array} \quad \begin{array}{l} f \text{ is} \\ \text{surjective.} \end{array}$$

Theorem: For any function $f : A \rightarrow A$,
if f is an involution, then f is surjective.

$$(\forall x \in A. f(f(x)) = x)$$

Assume this.

$$(\forall b \in A. \exists a \in A. f(a) = b)$$

Prove this.

If you ***assume***
this is true...

Initially, ***do nothing***. Once you
find a z through other means,
you can state it has property A .

Theorem: For any function $f : A \rightarrow A$,
if f is an involution, then f is surjective.

$$(\forall x \in A. f(f(x)) = x)$$

Assume this.

Since we're assuming this, we aren't going to pick a specific choice of x right now. Instead, we're going to keep an eye out for something to apply this fact to.

$$(\forall b \in A. \exists a \in A. f(a) = b)$$

Prove this.

Proof Outline

1. Assume f is an involution.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

$$(\forall x \in A. f(f(x)) = x) \rightarrow (\forall b \in A. \exists a \in A. f(a) = b)$$

Assume

There's a universal quantifier up front. Since we're proving this, we'll pick an arbitrary $b \in A$.

Prove this.

Proof Outline

1. Assume f is an involution.
2. Pick an arbitrary $b \in A$.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

$$(\forall x \in A. f(f(x)) = x)$$
 \rightarrow
$$(\forall b \in A. \exists a \in A. f(a) = b)$$

Now, we hit an existential quantifier.

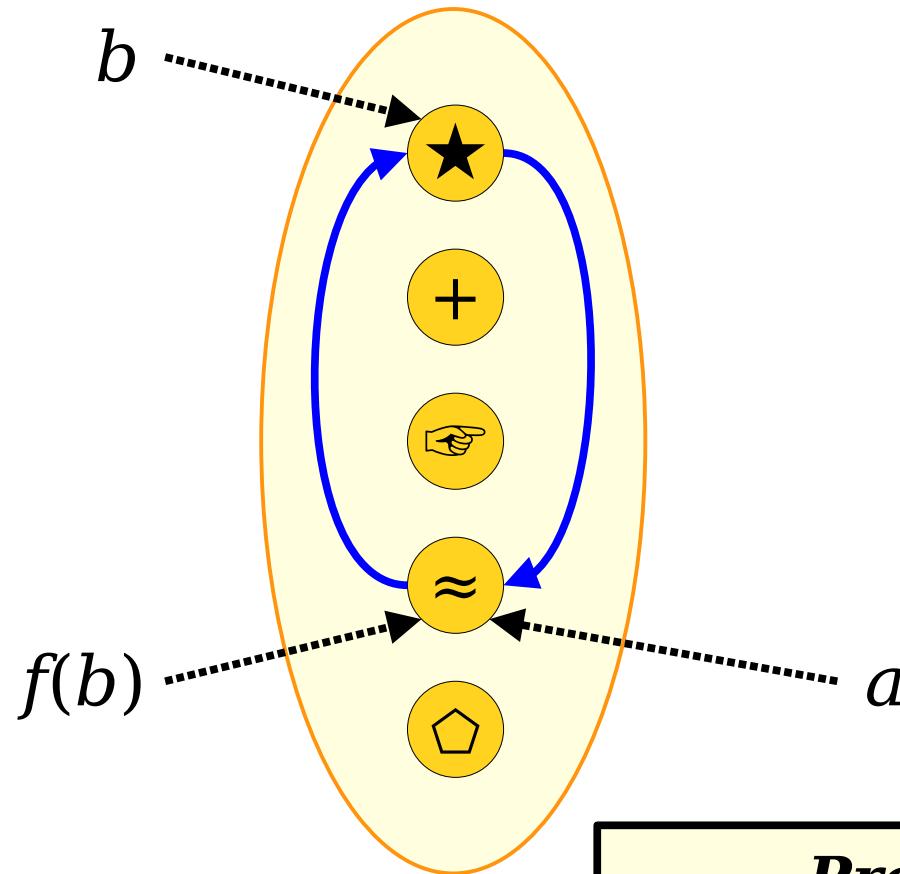
Since we're proving this, we need to find a choice of $a \in A$ where this is true.

Prove this.

Proof Outline

1. Assume f is an involution.
2. Pick an arbitrary $b \in A$.
3. Give a choice of $a \in A$ where $f(a) = b$.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.



Proof Outline

1. Assume f is an involution.
2. Pick an arbitrary $b \in A$.
3. Give a choice of $a \in A$ where $f(a) = b$.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

Proof: Pick any involution $f : A \rightarrow A$. We will prove that f is surjective. To do so, pick an arbitrary $b \in A$. We need to show that there is an $a \in A$ where $f(a) = b$.

Specifically, pick $a = f(b)$. This means that $f(a) = f(f(b))$, and since f is an involution we know that $f(f(b)) = b$. Putting this together, we see that $f(a) = b$, which is what we needed to show. ■

Proof Outline

1. Assume f is an involution.
2. Pick an arbitrary $b \in A$.
3. Give a choice of $a \in A$ where $f(a) = b$.

Theorem: For any function $f : A \rightarrow A$, if f is an involution, then f is surjective.

Proof: Pick any involution $f : A \rightarrow A$. We will prove that f is surjective. To do so, pick an arbitrary $b \in A$. We need to show that there is an $a \in A$ where $f(a) = b$.

Specifically, pick $a = f(b)$. This means that $f(a) = f(f(b))$, and since f is an involution we know that $f(f(b)) = b$. Putting this together, we see that $f(a) = b$, which is what we needed to show. ■

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.

The Two-Column Proof Organizer

Theorem: Let $f : A \rightarrow A$ be an involution.
Then f is injective.

Theorem: Let $f : A \rightarrow A$ be an involution.
Then f is injective.

What We're Assuming

$f : A \rightarrow A$ is an involution.

$\forall z \in A. f(f(z)) = z.$

We're *assuming* this universally-quantified statement, so we won't introduce a variable for what's here.

What We Need to Prove

f is injective.

$\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$

We need to *prove* this universally-quantified statement. So let's introduce arbitrarily-chosen values.

Theorem: Let $f : A \rightarrow A$ be an involution.
Then f is injective.

<i>What We're Assuming</i>	<i>What We Need to Prove</i>
$f : A \rightarrow A$ is an involution. $\forall z \in A. f(f(z)) = z.$ $a_1 \in A$ $a_2 \in A$	f is injective. $\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$

Theorem: Let $f : A \rightarrow A$ be an involution.
Then f is injective.

What We're Assuming	What We Need to Prove
$f : A \rightarrow A$ is an involution. $\forall z \in A. f(f(z)) = z.$ $a_1 \in A$ $a_2 \in A$	f is injective. $\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$ <div data-bbox="1090 817 2064 1262" style="border: 1px solid black; padding: 10px;"><p>We need to prove this implication. So we assume the antecedent and prove the consequent.</p></div>

Theorem: Let $f : A \rightarrow A$ be an involution.
Then f is injective.

What We're Assuming	What We Need to Prove
$f : A \rightarrow A$ is an involution. $\forall z \in A. f(f(z)) = z.$ $a_1 \in A$ $a_2 \in A$ $f(a_1) = f(a_2)$ $f(f(a_1)) = f(f(a_2))$ $f(f(a_1)) = a_1$ $f(f(a_2)) = a_2$	f is injective. $\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$ }

Theorem: Let $f: A \rightarrow A$ be an involution. Then f is injective.

Proof: Choose any $a_1, a_2 \in A$ where $f(a_1) = f(a_2)$. We need to show that $a_1 = a_2$.

Since $f(a_1) = f(a_2)$, we know that $f(f(a_1)) = f(f(a_2))$. Because f is an involution, we see $a_1 = f(f(a_1))$ and that $f(f(a_2)) = a_2$. Putting this together, we see that

$$a_1 = f(f(a_1)) = f(f(a_2)) = a_2,$$

so $a_1 = a_2$, as needed. ■

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.

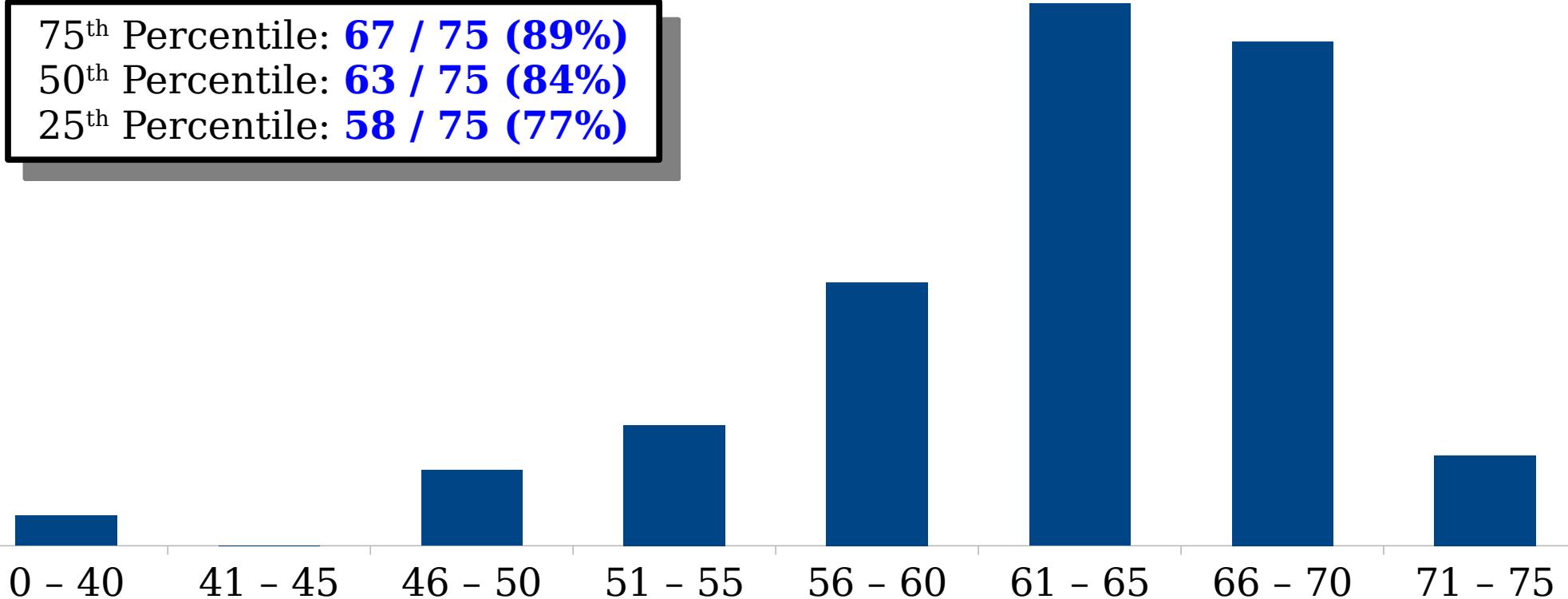
Time-Out for Announcements!

Problem Set One Graded

- Your wonderful TAs have finished grading Problem Set One.
- Grades and feedback are up on the Gradescope.
- Solutions are available online on the course website (visit the page for PS1 to get the link).

Problem Set One Graded

75th Percentile: **67 / 75 (89%)**
50th Percentile: **63 / 75 (84%)**
25th Percentile: **58 / 75 (77%)**

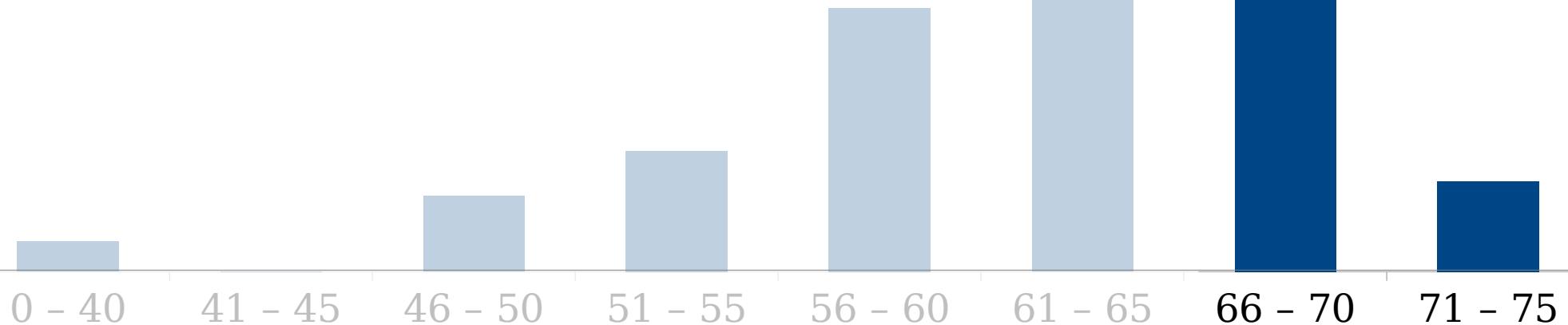


Pro tips when reading a grading distribution:

1. Standard deviations are ***unhelpful and discouraging***. Ignore them.
2. The average score is a ***unhelpful***. Ignore it.
3. Raw scores are ***unhelpful and discouraging***. Ignore them.

Problem Set One Graded

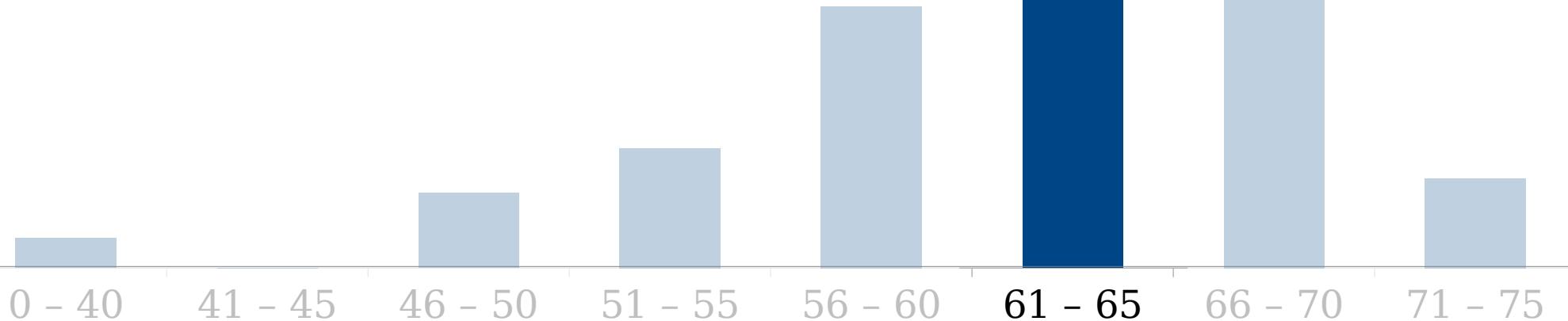
75th Percentile: **67 / 75 (89%)**
50th Percentile: **63 / 75 (84%)**
25th Percentile: **58 / 75 (77%)**



"Great job! Look over your feedback for some tips on how to tweak things for next time."

Problem Set One Graded

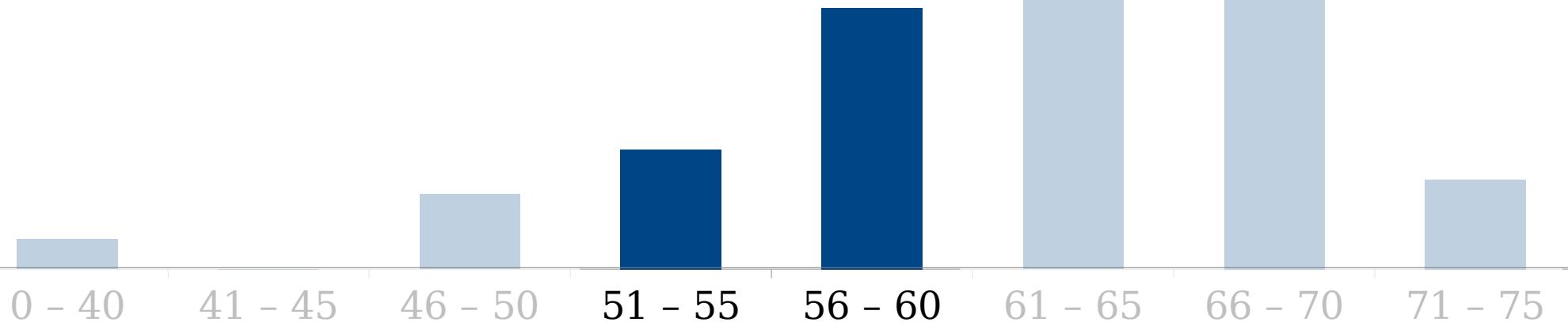
75th Percentile: **67 / 75 (89%)**
50th Percentile: **63 / 75 (84%)**
25th Percentile: **58 / 75 (77%)**



"You're almost there! Review the feedback on your submission and see what to focus on for next time."

Problem Set One Graded

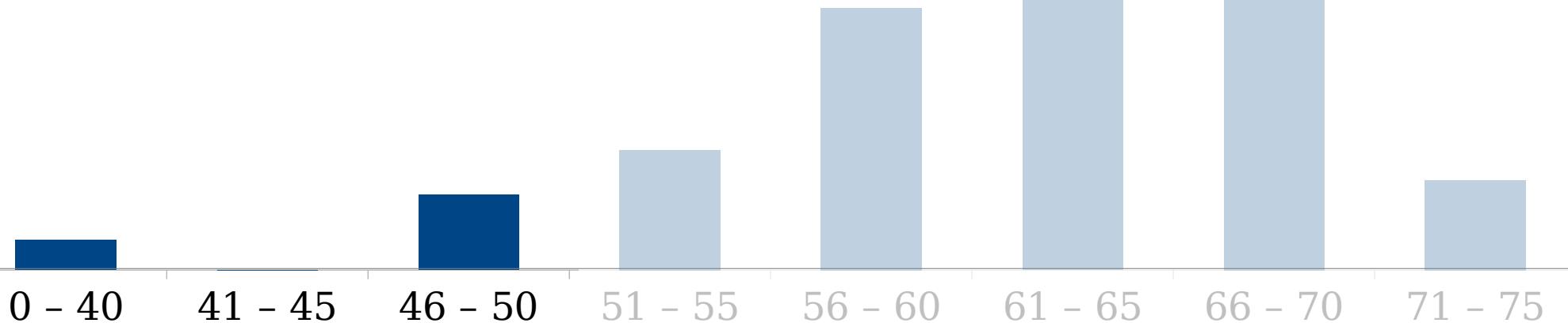
75th Percentile: **67 / 75 (89%)**
50th Percentile: **63 / 75 (84%)**
25th Percentile: **58 / 75 (77%)**



"You're on the right track, but there are some areas where you need to improve. Review your feedback and ask us questions when you have them."

Problem Set One Graded

75th Percentile: **67 / 75 (89%)**
50th Percentile: **63 / 75 (84%)**
25th Percentile: **58 / 75 (77%)**



"Looks like something hasn't quite clicked yet.
Get in touch with us and stop by office hours
to get some extra feedback and advice.
Don't get discouraged - you can do this!"

What Not to Think

- “Well, I guess I’m just not good at math.”
 - For most of you, this is your first time doing proof-based math.
 - It is **totally normal** when learning any new skill to have areas where you need to improve. And we cover a ton of material here!
 - You will improve over the quarter. Hang in there!
- “I got a good score, so I don’t need to review anything.”
 - Check your feedback. Make sure you didn’t miss an important detail.
 - We let you work in pairs. Be honest with yourself – did you lean too much on your partner? Could you have done the work unassisted?
 - We provide lots of office hours. Be honest with yourself – did you get too much help from the TAs?
- You will need to be able to solve problems like these solo on the exams. ***Put in the time now to patch up any gaps in your understand***

Essential Action Items

- ***Review your feedback.***
 - Don't just look at the raw score. Make sure you really, truly understand where you need to improve.
- ***Read the solutions in depth.***
 - Make sure you understand what we were asking, why we asked it, and what we wanted you to take away.
 - (Especially for Q8, Q10) Look at our solutions and see if there's any neat lessons you can draw from them.
- ***Come to us with questions.***
 - Anything you're not sure about? That's what we're here for! Come to office hours, ask questions on EdStem, etc.

Back to CS103!

Function Composition

f : People → Places

g : Places → Prices

Kaia

Hamed

Evelyn

Usman

Tushar

Cupertino, CA

San Francisco

Redding, CA

Utqiagvik, AK

Palo Alto, CA

Far Too Much

A King's Ransom

A Modest Amount

More Than You'd Expect

People

Places

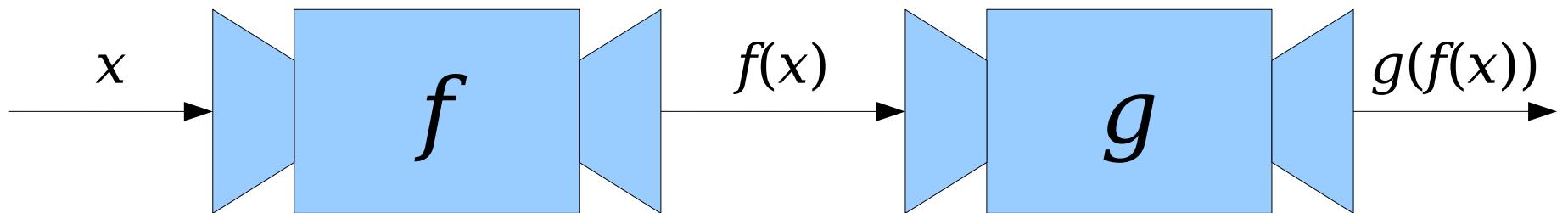
Prices

h : People → Prices

h(x) = g(f(x))

Function Composition

- Suppose that we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$.
- Notice that the codomain of f is the domain of g . This means that we can use outputs from f as inputs to g .



Function Composition

- Suppose that we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$.
- The ***composition of f and g***, denoted $g \circ f$, is a function where
 - $g \circ f : A \rightarrow C$, and
 - $(g \circ f)(x) = g(f(x))$.
- A few things to notice:
 - The domain of $g \circ f$ is the domain of f . Its codomain is g 's codomain.
 - Even though composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.
- Composition is ***associative***: $(f \circ g) \circ h = f \circ (g \circ h)$. (Prove this!)
- Composition is not necessarily commutative: $f \circ g$ is not necessarily the same as $g \circ f$. (Prove this!)

The name of the function is $g \circ f$. When we apply it to an input x , we write $(g \circ f)(x)$. I don't know why, but that's what we do.

Properties of Composition

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

What We're Assuming

$f : A \rightarrow B$ is an injection.

$$\forall x \in A. \forall y \in A. (x \neq y \rightarrow f(x) \neq f(y))$$

)

$g : B \rightarrow C$ is an injection.

$$\forall x \in B. \forall y \in B. (x \neq y \rightarrow g(x) \neq g(y))$$

)

We're *assuming* these universally-quantified statements, so we won't introduce any variables for what's here.

What We Need to Prove

$g \circ f$ is an injection.

$$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$$

)

We need to *prove* this universally-quantified statement. So let's introduce arbitrarily-chosen values.

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

What We're Assuming

$f : A \rightarrow B$ is an injection.

$$\forall x \in A. \forall y \in A. (x \neq y \rightarrow f(x) \neq f(y))$$

$g : B \rightarrow C$ is an injection.

$$\forall x \in B. \forall y \in B. (x \neq y \rightarrow g(x) \neq g(y))$$

$a_1 \in A$ is arbitrarily-chosen.

$a_2 \in A$ is arbitrarily-chosen.

What We Need to Prove

$g \circ f$ is an injection.

$$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$$

We need to *prove* this universally-quantified statement. So let's introduce arbitrarily-chosen values.

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

What We're Assuming

$f : A \rightarrow B$ is an injection.

$$\forall x \in A. \forall y \in A. (x \neq y \rightarrow f(x) \neq f(y))$$

$g : B \rightarrow C$ is an injection.

$$\forall x \in B. \forall y \in B. (x \neq y \rightarrow g(x) \neq g(y))$$

$a_1 \in A$ is arbitrarily-chosen.

$a_2 \in A$ is arbitrarily-chosen.

$a_1 \neq a_2$

What We Need to Prove

$g \circ f$ is an injection.

$$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$$

Now we're looking at an implication. Let's **assume** the antecedent and **prove** the consequent.

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

What We're Assuming

$f : A \rightarrow B$ is an injection.

$\forall x \in A. \forall y \in A. (x \neq y \rightarrow f(x) \neq f(y))$

$g : B \rightarrow C$ is an injection.

$\forall x \in B. \forall y \in B. (x \neq y \rightarrow g(x) \neq g(y))$

$a_1 \in A$ is arbitrarily-chosen.

$a_2 \in A$ is arbitrarily-chosen.

$a_1 \neq a_2$

What We Need to Prove

$g \circ f$ is an injection.

$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$

)

Let's write this out
separately and simplify
things a bit.

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

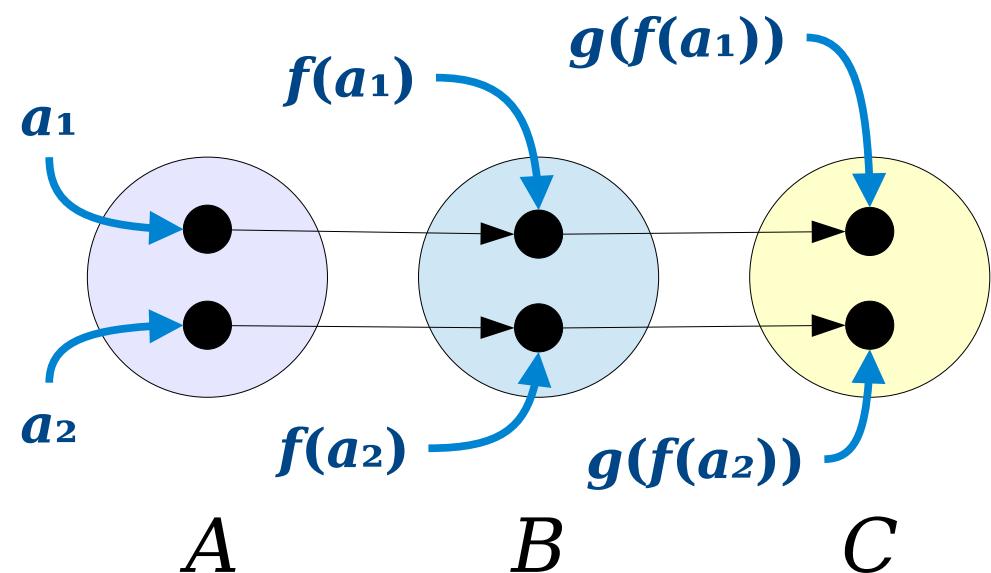
What We're Assuming	What We Need to Prove
$f : A \rightarrow B$ is an injection. $\forall x \in A. \forall y \in A. (x \neq y \rightarrow f(x) \neq f(y))$)	$g \circ f$ is an injection. $\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$) $g(f(a_1)) \neq g(f(a_2))$
$g : B \rightarrow C$ is an injection. $\forall x \in B. \forall y \in B. (x \neq y \rightarrow g(x) \neq g(y))$)	
$a_1 \in A$ is arbitrarily-chosen. $a_2 \in A$ is arbitrarily-chosen. $a_1 \neq a_2$	<p>The diagram illustrates the composition of two functions, f and g, as injections. It shows three sets: A, B, and C. Set A contains two elements, a_1 and a_2, represented by light purple circles. Arrows from a_1 and a_2 point to $f(a_1)$ and $f(a_2)$ respectively, which are represented by light blue circles in set B. From each $f(a_i)$ in B, an arrow points to $g(f(a_i))$ in set C, represented by a light yellow circle. The labels $f(a_1)$, $f(a_2)$, $g(f(a_1))$, and $g(f(a_2))$ are in blue, corresponding to the arrows. The sets A, B, and C are labeled below their respective circles.</p>

Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required. ■

Great exercise: Repeat this proof using the other definition of injectivity.

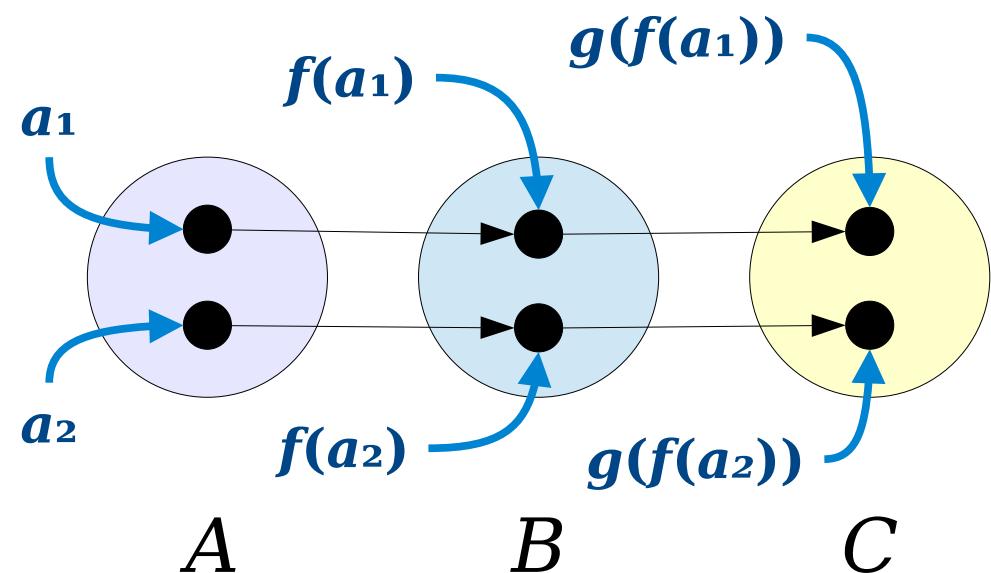


Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required. ■

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.



Theorem: If $f : A \rightarrow B$ is a surjection and $g : B \rightarrow C$ is a surjection, then the function $g \circ f : A \rightarrow C$ is a surjection.

Proof: In the appendix!

Major Ideas From Today

- Proofs involving first-order definitions are heavily based on the structure of those definitions, yet FOL notation itself does *not* appear in the proof.
- Statements behave differently based on whether you're ***assuming*** or ***proving*** them.
- When you ***assume*** a universally-quantified statement, initially, do nothing. Instead, keep an eye out for a place to apply the statement more specifically.
- When you ***prove*** a universally-quantified statement, pick an arbitrary value and try to prove it has the needed property.

	If you assume this is true...	To prove that this is true...
$\forall x. A$	Initially, do nothing . Once you find a z through other means, you can state it has property A .	Have the reader pick an arbitrary x . We then prove A is true for that choice of x .
$\exists x. A$	Introduce a variable x into your proof that has property A .	Find an x where A is true. Then prove that A is true for that specific choice of x .
$A \rightarrow B$	Initially, do nothing . Once you know A is true, you can conclude B is also true.	Assume A is true, then prove B is true.
$A \wedge B$	Assume A . Also assume B .	Prove A . Also prove B .
$A \vee B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. <i>(Why does this work?)</i>
$A \leftrightarrow B$	Assume $A \rightarrow B$ and $B \rightarrow A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Next Time

- ***Set Theory Revisited***
 - Formalizing our definitions.
- ***Proofs on Sets***
 - How to rigorously establish set-theoretic results.

Appendix: Additional Function Proofs

Proof: Composing surjections yields a surjection.

Theorem: If $f : A \rightarrow B$ is surjective and $g : B \rightarrow C$ is surjective, then $g \circ f : A \rightarrow C$ is also surjective.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary surjections.

We will prove that the function $g \circ f : A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.

Consider any $c \in C$. Since $g : B \rightarrow C$ is surjective, there is some $b \in B$ such that $g(b) = c$. Similarly, since $f : A \rightarrow B$ is surjective, there is some $a \in A$ such that $f(a) = b$. Then we see that

$$g(f(a)) = g(b) = c,$$

which is what we needed to show. ■

